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Necessary and sufficient conditions of point avoidance in a strictly linear
differential game in a plane are presented. This paper is related to [1-4],

1. Let the motion of a conflict - controlled system in the Fuclidean plane X be
defined by the differential equation

dz/dt = Az -+ f (u, V) (L1

where Z is a two - dimensional phase vector , A is a constant 2 X 2 matrix, f
is a continuous function with values in X and specified in compactum G belonging to
the product X, X X, of finite - dimensional Buclidean spaces, The selection of con-
trols u and v is effected by the first and second player , respectively.

We denote by P (Q) the orthogonal projection of G on X, (X,), andset P (v)
={ue?P U, VEGL veQQw = (veQ: u, v)=G6),ues P).
We assume that P (v) (Q (u)) depends on v (1) in the sense of Hausdorff's metric.

Let U (V) be the set of strategies of the first (second) player, namely set of all
functions determined in R, X X with valuesin P (Q), where R, is a set of posi-
tive numbers and the vinculum denotes closure, We denote by {j° (V¥ the set of all
functions measurable in ¢ for any v & @ (u < P), which associate to every vector

(¢, v) (¢, u)) in R, X Q(R, X P) avectorin P (v) (Q (u)).

Let A be an arbitrary subdivision of the semiaxis R, by points 0 =1, << ¢, <<
..., lim¢; = oo when i— oco. We denote by d (A) the diameter of subdivi~
sion A i.e, sup {/ty; —#;|:i=1,2, ..}, andfor fixed A4, yE X,
UeU (VeV),ad Ve V* (U° e U% weuse symbol z (<5 A, y, U, |4
(x (-3 A, y, U, V)) for denoting an absolutely continuous function specified in R,
with values in X, equal y at ¢ = 0, and in every half- open interval ¢; <t <
i+, £ = 1,2 ,... ofsubdivision A is the solution of the differential equation

dx/dt = Az + f (U (tia x (tl))7 Vu (t7 U (tfv z (tl)))
(defdt = Az +f(U° (@, V (i, z (%)), V (8, z ()

Let m denote the coordinate origin and O (g, x) denote the & -neighborhood of
point z & X. We introduce sets B, and B,.

The set B, is the totality of all points y & X for each of which it is possible to
select a strategy I/ e= U, instant ® > O , and the mapping € — § (¢) from R,
into R, so that for any & >>Q the subdivision A of diameter d (A) <8 (¢) and
function V* & V* atsome ¢ & [0, 8] the inclusionz(t; A, y, U, V)< 0 (e, m)
is satisfied,

The set B, is the totality of all points y & X for each of which it is possible to
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select a strategy ¥V & V and mapping of ® —> ¢ (8)and © — 8(6) from R, into
R, sothat forany © >0 the subdivision A of diameter d (A) <C 6 (&) and function

U’ & U° theinclusion z (¢; A, y, U, V) & X \ O (e, m) is satisfied for any
t= 10, 8].

In other words the set B, (B,) is the totality of all initial points ¥ in plane X
for each of which there exists a method of action of the first (second) player that makes
it possible for him to bring system (1, 1) fairly close to the terminal point m (makes it
possible to prevent system (1, 1) from reaching point m in any finite time) for any
actions of the second (first) player.

Below we present the necessary and sufficient conditions for B, = {m} (B, =

XN\ Am)).
2. We denote by I' the set of all functions that associate to every vector u in P
a vector in Q (u). Let

Hl(xa Y);‘“CO"IéJP[HAx*“f(uv V(u))L IEX, YEF
Hy(x,v)=co |J [—Az—f(u,v)], 22X, vl
usP(v)

where co D is the closed convex envelope of set D). For any arbitrary convex closed
set D (C X we assume

AD)={z:a=1»%, z&D, A >0}
D°=AMD) N{z:|x| =1}

Assuming everywhere below £ — {, 2, we denote W; = I for § = 1 and W
= Q@ when § =2, Letforany r &= X

K (z) = H (x, w) (2.1

N
weWE
L: () = Kg () » if Kg(z) 5= (£ and consists of a single element; in the oppo-
site case Lg () = (Jf -

Assumption 1, If K¢ (m) = (J and consists of one or two elements,
then
|inf max {A >0:Apes Hi(m, w)} >0
P, w
where the exact lower bound is taken over all p & K¢ (m), w & W,

Before formulating the second assumption , we introduce the following concepts.
For Lg (m) = ¢/ weset Fg = {x:xz = ALg (m), A= R} where R is a
set of real numbers. When the straight line Fg is not invariant with respect to linear
transformation defined by matrix A, then we assume that pg is a unit vector that sa-
tisfies conditions pgz Lg (m) = 0 and pg ALg (m) >> 0 where the prime indicates
transposition, For any ¢ >> ( we assume that

Jt = {le X Upe >0, c|l|>1VLg(m) >0},
Je2C = — Jpb.
and forany ] = X

83 () = max min I'f(u, v), Si:(!)=min max I'f(u, v)
ucsP veQ(u) veQ uesP(v)
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Assumption 2, If Lg (m) 5= (J and the straight line Fy are not invariant,
there exists such & > ( for which function S¢ is either convex in each of the setsJ;!*
and Jg** or is concave on each of these sets,

Weset £, = B;and E, = X \ B,.

Theorem . Let Assumptions 1 and 2 be satisfied. For Ey %= {m} it is necessa-
ry and sufficient if one of the following two conditions is satisfied:

Y Ke(m)#= @, Le(m) = @,

2) Lz (m) %= (& and there exista * > (0 such that Kz (z) 5= (J forany z &
A (Lg (m)) 1 O (%, m).

Notes. 1% An equivalent definition of the set K, (s), introduced by formula
(2. 1) can be derived as follows. Let v (z) be the totality of all unit vectors 1 such
that S () + ¢t 4z < 0. Then

Ki(@y= (' {z:]z]=1 1220}
lEVz(x)

if vg(z) =@, and K. (2) = {z|z] =1} when v (2) = @.
2°, Ifforany le X

S ()= 80 (2.2)

(i. e. the condition of saddle point is satisfied in the small game [1]),then KX, (z) =
X, (2) for any z = X. When (2, 2) holds and the set K; {(m) = K, {m) consists of one
or two elements, the fulfilment of Assumption 1 for E=1 entails its fulfilment for § =
2 and vice versa,

3°, Assumption 1 is satisfied if, for instance ,

flu,v) =u —v, 6 =P X, PCX, QCXi (2.3)

and the set co P is a polygon. Assumption 2 is satisfied if, for instance, at least one of
sets coP or co Q is apolygon.

3. Let us outline the proof of the theorem, Let K; (z) 5= (J forsome z=X
and rg (z) be some arbitrary vector in K (z). We set

1 (2,2 () = ind max (b 3> 0: hre (2) & He (2, )
wes E

We denote by II that of the two closed half - planes determined by the straight
line {&: Az & Fy} whereinto is directed vector Lg (m), when Lg (m) 5= (JJand the
straight line Fg is not invariant, We assume that Il (¢) = O (¢, m) (J I, ¢ > 0.
The following lemma is valid.

Lemma 1, If Lg (m) 5= ¢, Fg not invariant, and the Assumptions 1 and 2
are satisfied, then, either a)there exista x >> (0 and function ¢¢ that satisfies the
Lipschitz condition and is determined in O (x, m) with values in X°, such that K¢ (z)

# (5 and qg (z) € Ky (x) for any z & II (x) and inf {n (z, ¢z (x)): z =0 (%)}
> 0, or b)there exist such x > 0 and functions hz. and P that satisfy the
Lipschitz condition and are determined in({x, m)with values in J¢°t2 and R, respec~
tively, such that
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ufg:}gmin {(— 1)k (@ y: yE Hy (x, )} > ()
i=1,2; z&1II(x

he (x) 7= pe, e (@) >0, z& 11 (x) \ Fy

hg () = pg, P (@) =0, z1 (%) ) F

Depending on the particular form of systemn (1, 1) and the fulfilment of Assump -
tions 1 and 2 only one of the following five cases is possible:

) Ke(m)y# @, Lg (m) =

2) Lg (m) 5= @), Fgis invariant;

3) Lg (m) # (5, Fis not invariant and statement a) of Lemma 1 is satisfied ;

4) Lg (m) 5= ¢, Fe is not invariant and statement b) of Lemma 1issatisfied, and

5) Kg(m) = .
Lemma 2, If assumptions 1 and 2 are satisfied, then Ey 7= {m} in cases 1-3,
Zz and Eg = {m} in cases 4 and 5.
4 The theorem follows from Lemma 2 if
P one takes into consideration the following
observations:
statement a) of Lemma 1 implies the
fulfilment of condition 2) of the theorem;
a if statement b} of Lemma 1 is valid con-
dition 2) of the theorem is not satisfied;
condition 2) of the theorem is satisfied,
- when Lz (m) #= (/J and the straight line
Ty F¢ is invariant,

Fig. 1
4. Examples, Let function f and set G be of the form (2,3), If the sets P
and @ are such as shown in Figs, 1 and 2, K; (m) = K, (m) = ¢ , hence for any

matrix 4 we have, according to the theorem, B, = {m}, B, = X \ {m}. Now, let
the sets P and @ be such as shown in Fig, 3, then Ly (m)= Ly(m) = {I: ], =1,

I, =0} If A=ﬁ_—2 g{ (A:-—U? g“)

then there exists such x > 0 that K; (z) = K, (z) = @ (K, (2) = K, (2) &= @) for any
ze&(s:0 <z <x, z, =0} HenceB; = {m}, By, = X \ {m}(B, == (m}, By &
X\ {m}.
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Fig.2 Fig.3
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